CHEMOSELECTIVE REDUCTION OF ALDEHYDES WITH TETRA-n-BUTYLAMMONIUM TRIACETOXYBOROHYDRIDE¹

Charles F. Nutaitis and Gordon W. Gribble* Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755

Summary: Aldehydes, but not ketones, are smoothly reduced to alcohols by tetra-n-butylammonium triacetoxyborohydride in refluxing benzene.

The chemoselective reduction of aldehydes to primary alcohols, in the presence of ketones, has received a great deal of attention and several methodologies have resulted.²

Several years ago we reported³ that sodium triacetoxyborohydride $(NaBH(OAc)_3)$ in refluxing benzene is useful⁴ in this regard and, in fact, exhibits excellent aldehyde chemoselectivity even in the presence of excess reagent. However, since the preparation of this reagent involved treating a solid suspension of sodium borohydride in benzene with acetic acid (3.25 equiv.) followed by brief refluxing, it seemed possible that other borohydride species⁵ could be present (i.e., $BH_3OAc, -BH_2(OAc)_2^-$, $B(OAc)_4^-$) and that this, coupled with possible heat-induced decomposition and/or disproportionation during preparation, would obscure the true chemoselectivity of the relatively labile $BH(OAc)_3^-$ ion. Therefore, we have investigated the generation of this species from a soluble borohydride reagent under milder conditions in order to circumvent these aforementioned problems. In this paper we describe the generation of tetra-<u>n</u>-butylammonium triacetoxyborohydride - prepared <u>in situ</u> from dichloromethane soluble tetra-<u>n</u>-butylammonium borohydride⁶ - and its use as a chemoselective reducing agent.

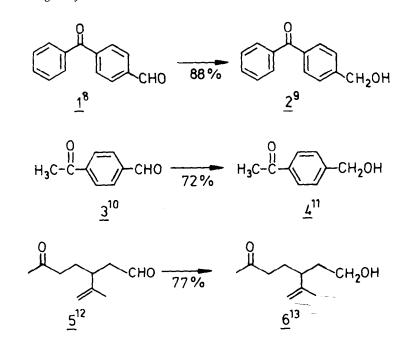
The results of the treatment of a 1:1 mixture of various alkehydes and ketones with <u>n</u>-Bu₄NBH $(OAc)_3$ are summarized in the Table. The most striking observation is that even with excess reagent in refluxing benzene for 24 h there is complete reduction of the aldehyde but virtually no reduction of the ketone (analysis by ¹H NMR spectroscopy⁷). Only the unusually reactive ketone 4-<u>tert</u>-butyl-cyclohexanone is affected under these conditions, being slowly reduced to a mixture of <u>cis</u>- and trans-4-tert-butylcyclohexanol in 19% yield after 24 h in refluxing benzene (2.5 hydride equivalents)

4287

Exp	Aldehyde	Ketone	Yield of Primary Alcohol, % ^b	Yield of Recovered Ketone, % ^C
1	benzaldehyde	acetophenone	95	96
2	phenylacetaldehyde	dibenzylketone	96	94
3	<u>p-methoxybenzaldehyde</u>	acetophenone	95	99
4	benzaldehyde	benzophenone	90	94
5	phenylacetaldehyde	2-heptanone	92	96
6	2,6-dichlorobenzaldehyde	acetophenone	80 ^d	92
7	mesitaldehyde	acetophenone	87 ^e	96

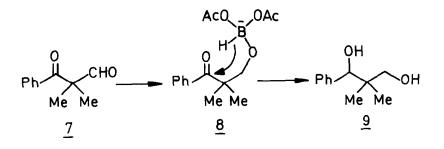
Table. Reduction of a 1:1 Mixture of Aldehyde and Ketone by Tetra-n-butylammonium Triacetoxyborohydride in Benzene (80°C, 24 h)^a

^aInitial concentrations were 0.024M ketone, 0.024M aldehyde, and 0.096M <u>n</u>-Bu₄NBH(OAc)₃, except in exp. 3 where the borohydride concentration was 0.146M.


^bYield refers to isolated product (column chromatography); identified by ¹H NMR.

^CYield refers to isolated ketone (column chromatography).

^dMp 95-97°.


^еМр 85-87°.

We have also examined several ketoaldehydes $(\underline{1}, \underline{3}, \underline{5})$ and in each case the hydroxyketone $(\underline{2}, \underline{4}, \underline{6})$ is obtained in good yield.

As expected from the work of Raber⁶, the reaction of ketoaldehyde <u>1</u> with <u>n</u>-Bu₄NBH₄ (one equiv) is nonchemoselective and gives a mixture of <u>2</u>, the corresponding hydroxyaldehyde, and recovered <u>1</u>. With excess <u>n</u>-Bu₄NBH₄<u>1</u> is transformed into the expected diol¹⁴ (65% yield).

Interestingly, ketoaldehyde $\underline{7}^{15}$ gave diol $\underline{9}^{16}$ (80% yield) on treatment with \underline{n} -Bu₄NBH(OAc)₃, presumably the result of intramolecular hydride delivery from intermediate <u>8</u>. A similar example of ketone reduction in a β -hydroxyketone by NaBH(OAc)₃, via intramolecular hydride delivery, has recently been reported.¹⁷

In summary, it seems evident that the chemoselectivity of the $BH(OAc)_3^-$ ion in aldehyde vs. ketone reductions is even greater than originally reported³, assuming that the counterion plays no role in these reactions.^{6b} Moreover, the simplicity of this aldehyde reduction procedure and the availability¹⁸ of <u>n</u>-Bu₄NBH₄ makes this methodology extremely attractive and an excellent alternative to the existing methods for aldehyde selective reduction.²

<u>Representative Procedure</u>. To a magnetically stirred solution of tetra-n-butylammonium borohydride (2.56 g, 0.010 mol) in benzene (50 ml) and dichloromethane (5 ml) at 20° C under nitrogen was added dropwise over 5 min a solution of acetic acid (1.70 ml, 0.030 mol) in benzene (10 ml). This solution was stirred at 20° C for 1 h to complete formation of tetra-n-butylammonium triacetoxyborohydride. The solution was heated to 75-80°C and then treated in one portion with a solution of 4-benzoylbenzaldehyde (1)(0.42 g, 0.0020 mol) in benzene (10 ml). The mixture was refluxed for 24 h and then processed by pouring into water, basifying with sodium hydroxide, and extracting with ether. The organic layer was washed with water, dried (Na₂SO₄), and concentrated in vacuo to afford a yellow oil. Flash chromatography (silica gel) gave 0.37 g (88%) of 4-benzoylbenzyl alcohol ($\underline{2}$)⁹.

<u>Acknowledgment</u>. We thank the Merck Sharp and Dohme Research Laboratories for partial support of this investigation and Robert C. Wade (Thiokol/Ventron) for a gift of tetra-n-butylammonium borohydride.

References and Notes

- 1. This paper is Part XII in the series "Reactions of Borohydride in Acidic Media". For Part XI, see G.W. Gribble and S.W. Wright, <u>Heterocycles</u>, <u>19</u>, 229 (1982).
- 2. (a) n-Bu₄NBH₃CN: R.O. Hutchins and D. Kandasamy, J. Am. Chem. Soc., <u>95</u>, 6131 (1973); (b) LiAIH (OtBu)₃: C.S. Sell, <u>Aust. J. Chem.</u>, <u>28</u>, 1383 (1975); (c) Li n-Bu₂-9-BBN: Y. Yamamoto, H. Toi, A. Sonoda, and S. Murahashi, J. <u>Am. Chem. Soc.</u>, <u>98</u>, 1965 (1976); (d) NaBH₄/RSH: Y. Maki,

K. Kikuchi, H. Sugiyama, and S. Seto, <u>Tetrahedron Lett.</u>, 263 (1977); (e) (CH₃)₂CHOH/Al₂O₃:
G.H. Posner, A.W. Runquist, and M.J. Chapdelaine, J. Org. Chem., 42, 1202 (1977); (f) 9-BEN/ pyridine: H.C. Brown and S.U. Kulkarni, J. Org. Chem., 42, 4169 (1977); (g) BH₃/LiCl: N.M. Yoon and J.S. Cha, J. Korean Chem. Soc., 22, 259 (1978); (h) n-Bu₃SnH/silica gel: N.Y.M. Fung, P. de/Mayo, J.H. Schauble, and A.C. Weedon, J. Org. Chem., 43, 3977 (1978); (i) B-siamyl-9-BBN: M.M. Midland and A. Tramontano, J. Org. Chem., 43, 1470 (1978); (j) LiBH₄/mol sieve: P.A. Risbood and D.M. Ruthven, J. Org. Chem., 44, 3969 (1979); (k) BH₃/RNH₂: G.C. Andrews, <u>Tetrahedron Lett.</u>, 21, 697 (1980); (1) Et₄NBH₄: T.N. Sorrell and P.S. Pearlman, <u>Tetrahedron Lett.</u>, 22, 675 (1981); (n) EtCH(OMgBr)₂: J.H. Babler and B.J. Invergo, <u>Tetrahedron Lett.</u>, 22, 621 (1981); (o) NaBH(OAr)₃: S. Yamaguchi, K. Kabuto, and F. Yasuhara, <u>Chem. Lett.</u> 461 (1981); (p) NaOCHO: J.H. Babler and S.J. Sarussi, J. Org. Chem. 46, 3367 (1981); (q) Li(Et₃CO)₃ AlH: S. Krishnamurthy, J. Org. Chem., 46, 4628 (1981).

- 3. G.W. Gribble and D.C. Ferguson, Chem. Comm., 535 (1975).
- See, for example, G.A. Tolstikov, V.N. Odinokov, R.I. Galeeva, R.S. Bakeeva, and V.R. Akhunova, <u>Tetrahedron Lett.</u>, 4851 (1979).
- 5. For a review of these reagents, see G.W. Gribble, <u>Eastman Organic Chemical Bulletin</u>, <u>51</u>, No.1 (1979).
- For the development of this reagent, see (a) D.J. Raber and W.C. Guida, <u>J. Org. Chem.</u>, 41, 690 (1976); (b) D.J. Raber, W.C. Guida, and D.C. Shoenberger, Tetrahedron Lett., 22, 5107 (1981).
- 7. Known mixtures of the ketone reduction product and the aldehyde reduction product indicated that $\geq 1\%$ ketone reduction could have been detected by ¹H NMR.
- Prepared from 4-methylbenzophenone using the general procedure of S.V. Lieberman and R. Connor, <u>Org. Syn. Coll. Vol.III</u>, 441 (1943); mp 62-65° (Lit. mp 64°: P. Bourcet, <u>Bull. Soc. Chem. Fr.</u>, <u>15</u>, 945 (1896)).
- 9. Mp 61-64°;¹H NMR(CDC1₃): ♂ 3.6 (m, 1 H), 4.7 (s, 2 H); 7.5 (m, 9 H); IR (CHC1₃) 3630, 3470, 1660 cm⁻¹; ¹³C NMR(CDC1₃): ♂ 64.4, 126.2, 128.1, 129.8, 130.2, 132.2, 136.5, 137.5, 145.6, 196.4.
- Prepared from 4-bromoacetophenone by the sequence: (a) CuCN, (b) ketalization, (c) DIBAL, (d) hydrolysis; oil.
- 11. Mp 51-54°C; ¹H NMR (CDCl₃) § 2.6 (s, 3 H), 2.95 (m, 1 H), 4.75 (s, 2 H), 7.7 (m, 4 H); IR (CHCl₃) 3640, 1690 cm⁻¹; ¹³C NMR (CDCl₃) § 26.5, 64.4, 126.5, 128.4, 136.2, 146.1, 197.7; Anal. Calcd for C₉H₁₉O₂: C, 72.00; H, 6.66. Found: C, 72.04; H, 6.73.
- 12. J. Wolinsky and W. Barker, J. Am Chem. Soc., 82, 636 (1960).
- 13. Oil; ¹H NMR (CDCl₃) § 1.6 (m, 7 H), 2.1 (s, 3 H), 2.4 (m, 3 H), 3.5 (t, 3 H), 4.75 (s, 2 H), ¹³C NMR (CDCl₃) § 17.5, 26.6, 29.9, 36.0, 41.3, 43.5, 61.0, 112.6, 146.5, 208.7; IR (neat) 3420, 1705 cm⁻¹; Anal. Calcd for C₁₀H₁₈O₂: C,70.49; H, 10.57. Found: C, 69.75; H, 10.55; ms m/e 170.1319 (M+, calcd 170.1307).
- 14. Mp 103-106°C; ¹H NMR (CDCl₃) § 1.8 (m, 1 H), 2.4 (m, 1 H), 4.65 (s, 2 H), 5.9 (d, 1 H), 7.3 (s, 9 H); Anal. Calcd for C₁₄H₁₄O₂: C, 78.50; H, 6.54. Found C, 78.32, H, 6.60.
- 15. T. Inukai and R. Yoshizawa, J. Org. Chem., 32, 404 (1967).
- Mp 75-78°C (Lit. mp81-81.5°C: F. Nerdel, P. Weyerstahl, and U. Kretzschmar, <u>Chem. Ber.</u>, <u>92</u> 1329 (1959).
- 17. A.K. Saksena and P. Mangiaracina, Tetrahedron Lett., 24, 273 (1983).
- (a) A. Brändström, U. Junggren, and B. Lamm, <u>Tetrahedron Lett.</u>, 3173 (1972); (b) Alfa Products (Thiokol/Ventron).

(Received in USA 2 May 1983)